Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37792316

RESUMO

Cerium-oxo clusters have applications in fields ranging from catalysis to electronics and also hold the potential to inform on aspects of actinide chemistry. Toward this end, a cerium-acetylacetonate (acac1-) monomeric molecule, Ce(acac)4 (Ce-1), and two acac1--decorated cerium-oxo clusters, [Ce10O8(acac)14(CH3O)6(CH3OH)2]·10.5MeOH (Ce-10) and [Ce12O12(OH)4(acac)16(CH3COO)2]·6(CH3CN) (Ce-12), were prepared and structurally characterized. The Ce(acac)4 monomer contains CeIV. Crystallographic data and bond valence summation values for the Ce-10 and Ce-12 clusters are consistent with both clusters having a mixture of CeIII and CeIV cations. Ce L3-edge X-ray absorption spectroscopy, performed on Ce-10, showed contributions from both CeIII and CeIV. The Ce-10 cluster is built from a hexameric cluster, with six CeIV sites, that is capped by two dimeric CeIII units. By comparison, Ce-12, which formed upon dissolution of Ce-10 in acetonitrile, consists of a central decamer built from edge sharing CeIV hexameric units, and two monomeric CeIII sites that are bound on the outer corners of the inner Ce10 core. Electrospray ionization mass spectrometry data for solutions prepared by dissolving Ce-10 in acetonitrile showed that the major ions could be attributed to Ce10 clusters that differed primarily in the number of acac1-, OH1-, MeO1-, and O2- ligands. Small angle X-ray scattering measurements for Ce-10 dissolved in acetonitrile showed structural units slightly larger than either Ce10 or Ce12 in solution, likely due to aggregation. Taken together, these results suggest that the acetylacetonate supported clusters can support diverse solution-phase speciation in organic solutions that could lead to stabilization of higher order cerium containing clusters, such as cluster sizes that are greater than the Ce10 and Ce12 reported herein.

2.
ACS Appl Mater Interfaces ; 15(37): 43667-43677, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37672765

RESUMO

While uranyl-based metal-organic frameworks (MOFs) boast impressive photocatalytic abilities, significant questions remain regarding their excitation pathways and methods to fine-tune their performance due to the lack of information regarding heterogeneous uranyl catalysis. Herein, we investigated how linker identity and photoexcitation impact uranyl photocatalysis when the uranyl coordination environment remains constant. Toward this end, we prepared three uranyl-based MOFs (NU-1301, NU-1307, and ZnTCPP-U2) and then examined the structural and photochemical properties of each through X-ray diffraction, X-ray absorption, and photoluminescence. We then correlated our observations to the photocatalytic performance for fluorination of cyclooctane. The excitation profile from NU-1301 and NU-1307 exhibited spin-forbidden linker transitions and uranyl vibronic progressions, with uranyl excitation and emission being most dominant in NU-1301. Consequently, NU-1301 was a more active photocatalyst than NU-1307. In contrast, the excitation profile from ZnTCPP-U2 contained transitions associated with the porphyrin linker exclusively. Photocatalytic activity from ZnTCPP-U2 significantly underperformed in comparison to that of the other two MOFs. These data suggest that linkers' photophysical properties can be used to predict the photocatalytic behavior of uranyl-containing MOFs.

3.
Inorg Chem ; 61(33): 12948-12953, 2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-35939562

RESUMO

Historic perspectives describing f-elements as being redox "inactive" are fading. Researchers continue to discover new oxidation states that are not as inaccessible as once assumed for actinides and lanthanides. Inspired by those contributions, we studied americium(III) oxidation in aqueous media under air using NaBiO3(s). We identified selective oxidation of Am3+(aq) to AmO22+(aq) or AmO21+(aq) could be achieved by changing the aqueous matrix identity. AmO22+(aq) formed in H3PO4(aq) (1 M) and AmO21+(aq) formed in dilute HCl(aq) (0.1 M). These americyl products were stable for weeks in solution. Also included is a method to recover 243Am from the americium and bismuth mixtures generated during these studies.

4.
Dalton Trans ; 51(17): 6696-6706, 2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35412547

RESUMO

The molecular tetravalent oxidation state for praseodymium is observed in solution via oxidation of the anionic trivalent precursor [K][Pr3+(NP(1,2-bis-tBu-diamidoethane)(NEt2))4] (1-Pr(NP*)) with AgI at -35 °C. The Pr4+ complex is characterized in solution via cyclic voltammetry, UV-vis-NIR electronic absorption spectroscopy, and EPR spectroscopy. Electrochemical analyses of [K][Ln3+(NP(1,2-bis-tBu-diamidoethane)(NEt2))4] (Ln = Nd and Dy) by cyclic voltammetry are reported and, in conjunction with theoretical modeling of electronic structure and oxidation potential, are indicative of principal ligand oxidations in contrast to the metal-centered oxidation observed for 1-Pr(NP*). The identification of a tetravalent praseodymium complex in in situ UV-vis and EPR experiments is further validated by theoretical modeling of the redox chemistry and the UV-vis spectrum. The latter study was performed by extended multistate pair-density functional theory (XMS-PDFT) and implicates a multiconfigurational ground state for the tetravalent praseodymium complex.

5.
Inorg Chem ; 60(12): 9064-9073, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34106710

RESUMO

The recent isolation of molecular tetravalent lanthanide complexes has enabled renewed exploration of the effect of oxidation state on the single-ion properties of the lanthanide ions. Despite the isotropic nature of the 8S ground state in a tetravalent terbium complex, [Tb(NP(1,2-bis-tBu-diamidoethane)(NEt2))4], preliminary X-band electron paramagnetic resonance (EPR) measurements on tetravalent terbium complexes show rich spectra with broad resonances. The complexity of these spectra highlights the limits of conventional X-band EPR for even qualitative determination of zero-field splitting (ZFS) in these complexes. Therefore, we report the synthesis and characterization of a novel valence series of 4f7 molecular complexes spanning three oxidation states (Eu2+, Gd3+, and Tb4+) featuring a weak-field imidophosphorane ligand system, and employ high-frequency and -field electron paramagnetic resonance (HFEPR) to obtain quantitative values for ZFS across this valence series. The series was designed to minimize deviation in the first coordination sphere from the pseudotetrahedral geometry in order to directly interrogate the role of metal identity and charge on the complexes' electronic structures. These HFEPR studies are supported by crystallographic analysis and quantum-chemical calculations to assess the relative covalent interactions in each member of this valence series and the effect of the oxidation state on the splitting of the ground state and first excited state.

6.
Chem Sci ; 11(24): 6149-6159, 2020 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-32832060

RESUMO

A redox pair of Ce4+ and Ce3+ complexes has been prepared that is stabilized by the [(NP(1,2-bis- t Bu-diamidoethane)(NEt2))]1- ligand. Since these complexes are isostructural to the recently reported isovalent terbium analogs, a detailed structural and spectroscopic comparative analysis was pursued via Voronoi-Dirichlet polyhedra analysis, UV-vis-NIR, L3-edge X-ray absorption near edge spectroscopy (XANES), cyclic voltammetry, and natural transitions orbital (NTO) analysis and natural bond orbital (NBO) analysis. The electrochemical studies confirm previous theoretical studies of the redox properties of the related complex [K][Ce3+(NP(pip)3)4] (pip = piperidinyl), 1-Ce(PN). Complex 1-Ce(PN*) presents the most negative E pc of -2.88 V vs. Fc/Fc+ in THF of any cerium complex studied electrochemically. Likewise 1-Tb(PN*) has the most negative E pc for electrochemically interrogated terbium complexes at -1.79 V vs. Fc/Fc+ in THF. Complexes 1-Ce(PN*) and 2-Ce(PN*) were also studied by L3-edge X-ray absorption near edges spectroscopy (XANES) and a comparison to previously reported spectra for 1-Tb(PN*), 2-Tb(PN*), 1-Ce(PN), and, [Ce4+(NP(pip)3)4], 2-Ce(PN), demonstrates similar n f values for all the tetravalent lanthanide complexes. According to the natural bond orbital analysis, a greater covalent character of the M-L bonds is found in 2-Ce(PN*) than in 1-Ce(PN*), in agreement with the shorter Ce-N bonds in the tetravalent counterpart. The greater contribution of Ce orbitals in the Ce-N bonding and, specifically, the higher participation of 4f electrons accounts for the stronger covalent interactions in 2-Ce(PN*) as compared to 2-Tb(PN*).

7.
Dalton Trans ; 49(45): 15945-15987, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-32519690

RESUMO

The fundamental redox chemistry and valence electronic structure of the lanthanides in molecular complexes and extended solids continues to be a fertile area of research. The contemporary understanding of the accessible oxidation states of the lanthanide elements and the variability in their electronic structure is the result of several paradigm shifts. While the lanthanide elements have already found widespread use in technical and consumer applications, the continued reevaluation of basic redox properties is a central chemical concern to establish a more complete description of periodic properties. This fundamental understanding of valence electronic structure as it is derived from oxidation state and coordination environment is essential for the continued development of lanthanides in quantum information science and quantum materials research. This review presents the chemical and physical properties of tetravalent lanthanide ions in extended solids and molecules with a focus on the elements apart from cerium: praseodymium, neodymium, terbium, and dysprosium.

8.
J Am Chem Soc ; 142(16): 7368-7373, 2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32248676

RESUMO

A tetrahomoleptic, pseudotetrahedral U4+ imidophosphorane complex, [U(NP(pip)3)4], 1-U(PN), is reported. This complex can be oxidized by two electrons with either mesityl azide or nitrous oxide. This two-electron atom/group transfer oxidation is the first example observed at a homoleptic, tetravalent uranium complex. The mesityl imido compound [U(NMes)(NP(pip)3)4], 2-U(PN)NMes, exhibits a unique square pyramidal geometry in contrast to the expected trigonal bipyramidal geometry of the oxo complex [U(O)(NP(pip)3)4], 2-U(PN)O. The bonding driving the structural dichotomy of these structures and the absence of a structurally observable inverse trans-influence in 2-U(PN)NMes were examined by DFT and natural bonding orbital analysis.

9.
J Am Chem Soc ; 141(33): 13222-13233, 2019 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-31352780

RESUMO

Synthetic strategies to yield molecular complexes of high-valent lanthanides, other than the ubiquitous Ce4+ ion, are exceptionally rare, and thorough, detailed characterization in these systems is limited by complex lifetime and reaction and isolation conditions. The synthesis of high-symmetry complexes in high purity with significant lifetimes in solution and the solid state is essential for determining the role of ligand-field splitting, multiconfigurational behavior, and covalency in governing the reactivity and physical properties of these potentially technologically transformative tetravalent ions. We report the synthesis and physical characterization of an S4 symmetric, four-coordinate tetravalent terbium complex, [Tb(NP(1,2-bis-tBu-diamidoethane)(NEt2))4] (where Et is ethyl and tBu is tert-butyl). The ligand field in this complex is weak and the metal-ligand bonds sufficiently covalent so that the tetravalent terbium ion is stable and accessible via a mild oxidant from the anionic, trivalent, terbium precursor, [(Et2O)K][Tb(NP(1,2-bis-tBu-diamidoethane)(NEt2))4]. The significant stability of the tetravalent complex enables its thorough characterization. The stepwise development of the supporting ligand points to key ligand control elements for further extending the known tetravalent lanthanide ions in molecular complexes. Magnetic susceptibility, electron paramagnetic resonance (EPR) spectroscopy, X-ray absorption near-edge spectroscopy (XANES), and density functional theory studies indicate a 4f7 ground state for [Tb(NP(1,2-bis-tBu-diamidoethane)(NEt2))4] with considerable zero-field splitting, demonstrating that magnetic, tetravalent lanthanide ions engage in covalent metal-ligand bonds. This result has significant implications for the use of tetravalent lanthanide ions in magnetic applications since the observed zero-field splitting is intermediate between that observed for the trivalent lanthanides and for the transition metals. The similarity of the multiconfigurational behavior in the ground state of [Tb(NP(1,2-bis-tBu-diamidoethane)(NEt2))4] (measured by Tb L3-edge XAS) to that observed in TbO2 implicates ligand control of multiconfigurational behavior as a key component of the stability of the complex.


Assuntos
Complexos de Coordenação/química , Térbio/química , Complexos de Coordenação/síntese química , Espectroscopia de Ressonância de Spin Eletrônica , Ligantes , Modelos Moleculares , Fosforanos/síntese química , Fosforanos/química , Espectroscopia por Absorção de Raios X
10.
Dalton Trans ; 48(23): 8030-8033, 2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-31074474

RESUMO

The synthesis and structural characterization of the first molecular complexes of lanthanide iodides supported by the weak-base, diethyl ether, are reported. Single-crystal diffraction studies reveal a conserved [LnI3(mer-Et2O)3] structure (Ln = Ce, Pr, Nd, Sm, Gd, Tb, and Tm). These precursors are prepared from lanthanide metal and iodine in diethyl ether for all lanthanides La to Tm (excluding Pm and Eu) and provide the THF adducts in good to excellent (60-91%) yield in a two-step process.

11.
Inorg Chem ; 58(8): 5289-5304, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30943020

RESUMO

The homoleptic complexes of cerium with the tris(piperidinyl)imidophosphorane ligand, [NP(pip)3]-, present the most negative Ce3+/4+ redox couple known (<-2.64 V vs Fc/Fc+). This dramatic stabilization of the cerium tetravalent oxidation state [>4.0 V shift from the Ce3+/4+ couple in 1 M HClO4(aq)] is established through reactivity studies. Spectroscopic studies (UV-vis, electron paramagnetic resonance, and Ce L3-edge X-ray absorption spectroscopy), in conjunction with density functional theory studies, reveal the dominant covalent metal-ligand interactions underlying the observed redox chemistry and the dependence of the redox potential on the binding of potassium in the inner coordination sphere.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...